Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 22(18): 1472-1484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747974

RESUMO

BACKGROUND: Medicinal uses of natural phenolic acids and their synthetic derivatives have been augmented in recent years. Phenolic acids are chemically defined secondary plant metabolites and being moieties or leads are much versatile in nature with a wide scope of biological activities which seek the attention of researchers across the world to synthesize different derivatives of phenolic acids and screen them for their various biological properties. These compounds are of meticulous interest due to the properties they possess and their occurrence. Based on the convincing evidence reported in the literature, it is suggested that phenolic acids and their derivatives are promising molecules as a drug. OBJECTIVES: The present review article aims to bring together the information on the biosynthesis, metabolism, and sources of phenolic acids and emphasize the therapeutic potential of phenolic acid and its synthetic derivatives to comprehensively portray the current scenery for researchers interested in designing drugs for furthering this study. CONCLUSION: Phenolic acids being moieties or lead, are much versatile in nature as they possess a wide range of biological activities like antimicrobial, antioxidant, antiviral, antiulcer, antiinflammatory, antidiabetic, anticancer and many more offers researchers to explore more about these or many untapped benefits in the medicinal field. The information mentioned in this article will be helpful to the forthcoming researchers working in this area. Phenolic acids have massive potential to be investigated for novel medicinal possibilities and for the development of new chemical moieties to treat different diseases of clinical importance.


Assuntos
Antioxidantes , Hidroxibenzoatos , Antivirais
2.
BMC Chem ; 15(1): 45, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315523

RESUMO

BACKGROUND: Presently available chemical based synthetic preservative have emerged with various side effects, so the aspiration of natural and side effect free novel preservative has been greatly increased. As the natural preservative exhibit poor side effect with improved preservative efficacy. The recent development in computational studies leads advancement in drug designing and discovery of novel glucosamine-6-phosphate synthase (G-6-P synthase) inhibition based natural antimicrobial preservatives. Here, selected aesculin derivatives were screened for G-6-P synthase inhibition via docking study and evaluated for antioxidant, antimicrobial, preservative efficacy as well stability study. RESULTS: Modified aesculin derivatives were designed, synthesized and showed potent G-6-P synthase inhibition with remarkable antimicrobial, antioxidant, preservative efficacy and stability study. The molecular docking with target pdb id 1moq from G-6-P synthase resulted with better dock score and energy for compound 1 as compared to standard drugs streptomycin, ciprofloxacin, ampicillin and fluconazole, that supported the wet lab results. Among the synthesized compounds, the compound 1 possessed good antioxidant activity as compared to standard L-ascorbic acid. The resultant data for antimicrobial activity of aesculin derivatives revealed compound 1 as the most potent antimicrobial compound as compared to the standard drugs streptomycin, ciprofloxacin, ampicillin and fluconazole. While compound 2 showed better antimicrobial activity as compared to streptomycin, ciprofloxacin, ampicillin. The preservative efficacy test for compound 1 in aloe vera juice and white lotion USP has been showed the log CFU/mL values within the prescribed limit of USP standard and results were comparable to standard sodium benzoate, ethyl paraben and propyl paraben. Compound 1 has been found to be within prescribed limit of stability study over six month. CONCLUSION: Compound 1 showed the potent G-6-P synthase inhibitory, antioxidant, antimicrobial, preservative efficacy and stability study results as compared to standard drugs taken. The results have found comparable to molecular docking results, and this final compound may be used as new preservatives for food and pharmaceutical products. Moreover, the mechanistic insight into the docking poses was also explored by binding interactions of aesculin derivatives inside the pdb id 1moq. These results also supported the results for novel synthesized G-6-P synthase inhibitors.

3.
3 Biotech ; 11(2): 70, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33489687

RESUMO

Novel derivatives were synthesized using natural scaffold, like phenylpropanoids C6-C3 backbone to reduce unfavorable browning of food due to tyrosinase and oxidative spoilage. Most of the compounds displayed mushroom tyrosinase inhibition better than kojic acid. Compound CE48 exhibited better anti-tyrosinase (IC50-29.64 µM) and antioxidant (EC50-12.67 µM) activity than the reference compounds, kojic acid (IC50-50.30 µM) and ascorbic acid (EC50-14.55 µM), respectively. Compounds SAM30, SE78, 11F, and CE48 showed better anti-B. subtilis, anti-S. aureus, and anti-A. niger activity, respectively, compared to their parents. Molecular docking studies between inhibitors and mushroom tyrosinase corroborated the experimental reports, except SAM30 (glide score - 8.117) and SE78 (glide score - 6.151). In silico absorption, distribution, metabolism, excretion/toxicity (ADME/T) and toxicological studies of these newly synthesized compounds exhibited acceptable pharmacokinetic and safety profiles, like good aqueous solubility (- 3.34 to - 7.57), low human oral absorption (e.g., SAM30, SE78, FAM34), low gut-blood barrier permeability [36.67-209.88 nm/s in Cancer coli-2 (Caco-2) cells] and [19.45-91.51 nm/s in Madin-Darby Canine Kidney (MDCK) cells], low blood-brain barrier penetration, non-mutagenicity, and non-carcinogenicity. Interestingly, the synthesized compounds also possessed multifunctional properties, like microbial growth inhibitor, free radicals scavenger, and it also prevented browning of raw fruits and vegetables by inhibiting tyrosinase enzyme. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02636-0.

4.
Sci Rep ; 10(1): 20477, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235242

RESUMO

Glucosamine-6-Phosphate synthase enzyme has been targeted for development of better and safe preservative due to its role in microbial cell wall synthesis. In recent year's demand of preservatives for the food, cosmetics and pharmaceuticals have increased. Although, the available synthetic preservatives have associated unwanted adverse effects, soa chain of naringin derivatives were schemed synthesized and judged for antioxidant, antimicrobial, preservative efficacy, stability study and topical evaluation. Molecular docking resulted with excellent dock score and binding energy for compound 7, compound 6 and compound 1 as compared to standard drugs. Resultant data of antimicrobial activity revealed compound 7as most potent antimicrobial compound for P. mirabilis, P. aeruginosa, S. aureus, E. coli, C. albicans, and A. niger, respectively, as compared to the standard drugs. The preservative efficacy test of compound 7 in White Lotion USP showed the log cfu/mL value within prescribed limit of USP standard. Compound 7 stabilize the White lotion USP from microbial growth for a period of six months under accelerated storage condition. Compound 7 was further evaluated for toxicity by using the Draize test in rabbits and showed no sign of eye and skin irritation. The outcome demonstrated that synthesized naringin compounds showed glorious antioxidant, antimicrobial, preservative efficacy, stable and safe as compared to standards.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavanonas/farmacologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Conservantes Farmacêuticos/farmacologia , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Células CACO-2 , Contagem de Colônia Microbiana , Difusão , Desenho de Fármacos , Inibidores Enzimáticos/química , Flavanonas/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Coelhos , Testes de Irritação da Pele
5.
Sci Rep ; 10(1): 13903, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807915

RESUMO

G-6-P synthase enzyme has been involved in the synthesis of the microbial cell wall, and its inhibition may lead to the antimicrobial effect. In the present study, we designed a library of amygdalin derivatives, and two most active derivatives selected on the basis of various parameters viz. dock score, binding energy, and ADMET data using molecular docking software (Schrodinger's Maestro). The selected derivatives were synthesized and evaluated for their antioxidant and antimicrobial potential against several Gram (+ ve), Gram (-ve), as well as fungal strains. The results indicated that synthesized compounds exhibited good antioxidant, antimicrobial, and better preservative efficacy in food preparation as compared to the standard compounds. No significant differences were observed in different parameters as confirmed by Kruskal-Wallis test (p < 0.05). Docking results have been found in good correlation with experimental wet-lab data. Moreover, the mechanistic insight into the docking poses has also been explored by binding interactions of amygdalin derivative inside the dynamic site of G-6-P synthase.


Assuntos
Amigdalina/farmacologia , Conservantes de Alimentos/farmacologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Conservantes Farmacêuticos/farmacologia , Aloe/química , Amigdalina/síntese química , Amigdalina/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Conservantes de Alimentos/química , Sucos de Frutas e Vegetais , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Conservantes Farmacêuticos/química
6.
BMC Chem ; 14(1): 41, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32577624

RESUMO

BACKGROUND: Preservatives have to be added in food, pharmaceuticals and cosmetics products to maintain their shelf life. However, the existing chemical based preservatives have been associated with severe side effects that compel the researchers to find better safe preservatives based on natural products. G-6-P synthase is an important enzyme for bacterial and fungal cell wall synthesis and offers as a potential target to find better G-6-P synthase inhibitors based antimicrobial compounds. Naringenin, a flavanone, has been reported for a wide range of pharmacological activities including antimicrobial activity, which makes it a potential candidate to be explored as novel G-6-P synthase inhibitor. RESULTS: The synthesis of naringenin derivatives with potent G-6-P synthase inhibitor having remarkable antioxidant, antimicrobial and preservative efficacy was performed. Among the synthesized compounds, the compound 1 possessed good antioxidant activity (IC50 value, 6.864 ± 0.020 µM) as compared to standard ascorbic acid (IC50 value, 8.110 ± 0.069 µM). The antimicrobial activity of synthesized compounds revealed compound 1 as the most potent compound (pMIC 1.79, 1.79, 1.49, 1.49, 1.49 and 1.49 µM/mL for P. mirabilis, P. aeruginosa, S. aureus, E. coli, C. albicans and A. niger respectively) as compared to standard drugs taken. The compound 2 showed comparable activity against P. mirabilis (pMIC 1.14 µM/mL), C. albicans (pMIC 1.14 µM/mL) while the compound 3 also showed comparable activity against C. albicans (pMIC 1.16 µM/mL) as well A. niger (pMIC 1.46 µM/mL), likewise the compound 4 showed comparable activity against P. mirabilis (pMIC 1.18 µM/mL) as compared to the standard drugs streptomycin (pMIC 1.06, 1.36, 1.06 and 1.96 µM/mL for P. mirabilis, P. aeruginosa, S. aureus and E. coli respectively), ciprofloxacin (pMIC 1.12, 1.42, 1.12 and 1.42 µM/mL for P. mirabilis, P. aeruginosa, S. aureus and E. coli respectively), ampicillin (pMIC 1.14, 0.84, 0.84 and 1.74 µM/mL for P. mirabilis, P. aeruginosa, S. aureus and E. coli respectively) and fluconazole (pMIC 1.08 and 1.38 µM/mL for C. albicans and A. niger respectively). The molecular docking with the target G-6-P synthase pdb id 1moq resulted with an better dock score for compound 1 (- 7.42) as compared to standard antimicrobial drugs, ciprofloxacin (- 5.185), ampicillin (- 5.065) and fluconazole (- 5.129) that supported the wet lab results. The preservative efficacy test for compound 1 in White Lotion USP showed the log CFU/mL value within the prescribed limit and results were comparable to standard sodium benzoate, ethyl paraben and propyl paraben as per USP standard protocol. CONCLUSIONS: The synthesized naringenin derivatives exhibited significant G-6-P synthase inhibitory potential with good selectivity towards the selected target G-6-P synthase. Compound 1, bearing nitro group showed good antioxidant, antimicrobial and preservative efficacy compared with the standard drugs taken. The mechanistic insight about the compounds within the active site was completed by molecular docking that supported the results for novel synthesized G-6-P synthase inhibitors.

7.
Curr Pharm Des ; 26(15): 1650-1665, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32065087

RESUMO

The synthetic heterocyclic compounds have their importance due to their wide applications in various fields of science. The heterocyclic compounds have been reported for their anticancer, antitubercular, insecticides, analeptics, analgesic, anti-bacterial, anti-viral, anti-fungal, and weedicidal activity. Researchers have tried various newer targets in search of better antimicrobials acting via novel mechanisms. Glucosamine-6-Phosphate synthase is an enzyme present in microbial cells. The inactivation of G-6-P synthase may serve as a novel approach to find better antimicrobials. The increasing demands development of newer and effective antimicrobial drugs has reported in search of newer techniques for the generation of new drugs. Hence, the molecular docking technique shall be explored to find or investigate the newer target finding the novel compounds which can be an active antimicrobial compound. The present review has focused on the reported heterocyclic compounds which have been evaluated for their antimicrobial potential using G-6-P synthase as a target. The results of in silico methods and in vitro methods have been compared and critically discussed.


Assuntos
Glucosamina/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Compostos Heterocíclicos , Compostos Heterocíclicos/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inquéritos e Questionários
8.
Comb Chem High Throughput Screen ; 21(3): 182-193, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600755

RESUMO

BACKGROUND: Infections caused by microorganisms are the major cause of death today. The tremendous and improper use of antimicrobial agents leads to antimicrobial resistance. AIM AND OBJECTIVE: Various currently available antimicrobial drugs are inadequate to control the infections and lead to various adverse drug reactions. Efforts based on computer-aided drug design (CADD) can excavate a large number of databases to generate new, potent hits and minimize the requirement of time as well as money for the discovery of newer antimicrobials. Pharmaceutical sciences also have made development with advances in drug designing concepts. The current research article focuses on the study of various G-6-P synthase inhibitors from literature cited molecular database. Docking analysis was conducted and ADMET data of various molecules was evaluated by Schrodinger Glide and PreADMET software, respectively. Here, the results presented efficacy of various inhibitors towards enzyme G-6-P synthase. Docking scores, binding energy and ADMET data of various molecules showed good inhibitory potential toward G-6-P synthase as compared to standard antibiotics. This novel antimicrobial drug target G-6-P synthase has not so extensively been explored for its application in antimicrobial therapy, so the work done so far proved highly essential. This article has helped the drug researchers and scientists to intensively explore about this wonderful antimicrobial drug target. MATERIALS AND METHODS: The Schrodinger, Inc. (New York, USA) software was utilized to carry out the computational calculations and docking studies. The hardware configuration was Intel® core (TM) i5-4210U CPU @ 2.40GHz, RAM memory 4.0 GB under 64-bit window operating system. The ADMET data was calculated by using the PreADMET tool (PreADMET ver. 2.0). All the computational work was completed in the Laboratory for Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, INDIA. RESULTS: Molecular docking studies were carried out to identify the binding affinities and interaction between the inhibitors and the target proteins (G-6-P synthase) by using Glide software (Schrodinger Inc. U.S.A.-Maestro version 10.2). Grid-based Ligand Docking with Energetic (Glide) is one of the most accurate docking softwares available for ligand-protein, protein-protein binding studies. A library of hundreds of available ligands was docked against targeted proteins G-6-P synthase having PDB ID 1moq. Results of docking are shown in Table 1 and Table 2. Results of G-6-P synthase docking showed that some compounds were found to have comparable docking score and binding energy (kj/mol) as compared to standard antibiotics. Many of the ligands showed hydrogen bond interaction, hydrophobic interactions, electrostatic interactions, ionic interactions and π- π stacking with the various amino acid residues in the binding pockets of G-6-P synthase. CONCLUSION: The docking study estimated free energy of binding, binding pose andglide score and all these parameters provide a promising tool for the discovery of new potent natural inhibitors of G-6-P synthase. These G-6-P synthase inhibitors could further be used as antimicrobials. Here, a detailed binding analysis and new insights of inhibitors from various classes of molecules were docked in binding cavity of G-6-P synthase. ADME and toxicity prediction of these compounds will further accentuate us to study these compounds in vivo. This information will possibly present further expansion of effective antimicrobials against several microbial infections.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Sítios de Ligação , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Ligação Proteica , Software , Termodinâmica
9.
Pak J Pharm Sci ; 25(3): 693-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22713963

RESUMO

The present investigation focuses to determine the antimicrobial potential of an Ayurvedic formulation Kutajghan vati. In this study the activity of this formulation was compared with the standard antibiotics like Amikacin and Norfloxacin. Ethanol, methanol and acetone extract of Kutajghan vati demonstrated good antimicrobial activity and thus can form the basis for the development of a novel antibacterial formulation.


Assuntos
Antibacterianos/farmacologia , Ayurveda , Extratos Vegetais/farmacologia , Amicacina/farmacologia , Química Farmacêutica , Norfloxacino/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...